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Abstract

A numerical and theoretical study is conducted to evaluate the effect of temperature-dependent properties on the

hydrodynamic and thermal characteristics of viscoelastic fluid flow. The rheological constitutive equation of the fluid

under consideration follows a common form of the PTT model, which embodies both influences of elasticity and shear-

thinning in viscosity. A large number of simulations were carried out for a developing channel flow with an imposed

constant wall temperature by varying the parameters controlling elasticity (Weissenberg number) and viscous dissi-

pation (Brinkman number). The resulting Nusselt number and friction factor were determined from the numerical

results, for both conditions of constant and temperature-dependent properties. The properties that were allowed to vary

with temperature were the viscosity, thermal conductivity, specific heat and relaxation time of the PTT model. From the

results it was possible to determine how the usual correlations for Nu and Cf have to be modified, following the

property-correction method, in order to represent variable-property flow of this viscoelastic fluid. An alternative

method to account for variable properties, based on the definition of an equivalent temperature to be used with the

constant property Nu and Cf expressions, is also proposed and shown to be less sensitive to the influence of viscous

dissipation. The corrections are highly non-linear and strongly depend on eWe2 and Br especially when viscous dissi-

pation is weak.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Process engineering and the manufacture of modern

consumption items almost always involves non-isother-

mal flows, and the optimization of these processes re-

quires the ability to predict their characteristics under

real flow conditions. For instance, temperature-depen-
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dent transport properties, viscous dissipation or other

internal sources of energy are invariably present and

must be taken into account in the analysis, additionally

the flow configuration and the flow itself may not be

geometrically simple. In most instances, such features

preclude analytical solutions of the coupled hydrody-

namic, thermal energy and constitutive equations, and

recourse to numerical methods becomes mandatory.

With the non-Newtonian fluids that are usually

found in such relevant processes as in the chemical, the

food, the paint or the plastics industries, to name but a

few, complications are enhanced by the non-linearity of
ed.
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the constitutive equation and it is not surprising to see

major efforts at developing adequate numerical methods

especially for handling flows of such complex rheologi-

cal behaviour fluids. These materials are usually rather

viscous, require high temperatures for attaining the li-

quid state, as in the case of polymer melts, and large

temperature differences may also be present. These

conditions lead to effects such as internal heat genera-

tion by viscous dissipation and, consequently, a tem-

perature-dependent viscosity must be considered. Both

factors have a significant impact [1] on the flow and heat

transfer characteristics. Other transport and thermody-

namic properties, such as thermal conductivity, density

and specific heat, have a weak dependence on tempera-

ture so that the assumption of their temperature

invariance has less serious consequences [2], as will be

seen later.

The relevance of these factors on flow and heat

transfer performance has long been recognised, but early

works have focused on simple fluids and geometries to

gain insight into the problem. The issue of temperature-

dependent properties is not restricted to non-Newtonian

fluids; in the quest for ever more efficient processes,

analysis of laminar flows of Newtonian fluids with

temperature-dependent viscosity have recently being

carried out to help understand and develop mechanisms

of heat transfer enhancement and its relationship with

buoyancy [3]; such efforts can be traced back at least to

the mid twentieth century, as an inspection of the ref-

erence list of Chou and Tung [3] shows (for instance, the

1951 NACA report of Deissler). Textbooks like Kays

and Crawford [4] or Eckert and Drake [5] explain in

detail the treatment of high velocity convection for

Newtonian fluids, and suggest methods for correcting

the correlations derived on the basis of constant fluid

properties to account for their temperature dependence

and also for the effect of viscous dissipation. The

methods they present for Newtonian fluids have been

extended also to non-Newtonian inelastic fluids, as in

some of the works referred in the remaining paragraphs

of this introduction.

Using several generalised Newtonian models, such as

power law, Ellis or Prandtl–Eyring fluids, several au-

thors have investigated the effects of viscous dissipation

and/or temperature-dependent viscosity on fully-devel-

oped and developing pipe flow. A comprehensive sum-

mary of such developments is presented by Forrest and

Wilkinson [6] for laminar pipe flow of power law fluids,

and by Skelland [7] for other duct flows and fluids. For

other more complex flows of industrial relevance the

solution of the equations becomes much more complex

and can only be achieved numerically, unless simplifying

assumptions are made, as in Kenny et al. [8],who

investigated the extrusion of thermoplastics including

the effect of slip at the walls, or in the rectangular duct

work of Shin and Cho [9].
Investigations with viscoelastic fluids, where the ef-

fects of temperature-dependence of the viscosity are

accounted for, are much scarcer, but no less relevant. A

major limitation is the convergence difficulty found with

iterative numerical methods for highly elastic flows, and

so the attention of researchers has been mostly concen-

trated on resolving this issue. Nonetheless, we identify

the numerical simulation of Davies and Li [10] with a

White–Metzner fluid in a journal bearing and, more

recently, the numerical simulations of Shin et al. [11]

using an explicit viscoelastic model which is much easier

to solve. Other recent works on non-isothermal flow of

viscoelastic fluids having temperature-dependent fluid

properties are the simulations of Wachs and Clermont

[12] and Marduel and Kunisch [13] in the 4:1 contraction

benchmark flow. Whereas the former was basically

aimed at assessing the performance of a numerical

method under non-isothermal conditions, the latter

developed a simple flow control strategy to reduce the

size of recirculation zones. A point worth noting is that,

in both previous references, first order schemes were

used for the convective terms in the transport and con-

stitutive equations and consequently severe numerical

diffusion errors are bound to be present and especially so

with viscoelastic fluids.

The present work is a contribution towards assessing

and quantifying the extent of temperature-dependence

fluid properties on the flow of viscoelastic fluids and

simple corrective terms are proposed for heat transfer

and friction factor correlations in some flows. This re-

quires a realistic rheological constitutive equation as

well as flows that are relevant in the perspective of

polymer melt operations. The rheological model here

considered is the Phan-Thien–Tanner (PTT) model [14]

and the flows selected will be the fundamental develop-

ing and fully-developed channel flows which represent

some of the typical conditions found in extrusion. The

basic results for this investigation were obtained with an

existing simulation method [15] which, for the present

purposes, was extended to include solution of the energy

equation. Naturally, it was necessary to validate these

new developments against analytical solutions and for

that purpose the literature was used [6,7,16,17].

The paper is organised as follows: in the next section

we present the relevant conservation equations and

outline the numerical method used to solve them. To

frame the objectives of this work, Section 3 briefly re-

views procedures in the literature for correcting effects of

temperature dependence of fluid properties on Nusselt

number and friction factor correlations. In the ensuing

results section, we start by validating the results of the

non-isothermal viscoelastic simulations with data from

the literature. Note that the validation of the present

hydrodynamic computational method has been con-

ducted in the past for isothermal Newtonian [18,19] and

viscoelastic fluid flows [20,21]. The extensive investiga-
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tion of the non-isothermal developing channel flow with

viscoelastic fluids will then be carried out to fully assess

the extent of the temperature-dependent effects upon the

flow and heat transfer characteristics. The results allow

the quantification of recommended coefficients for cor-

recting those effects but an alternative methodology is

also proposed. The paper ends with a summary of the

main conclusions.
2. Equations and outline of solution procedure

The equations to be solved for non-isothermal lami-

nar flow of incompressible fluids are the equations of

conservation of mass

ouj
oxj

¼ 0; ð1Þ

linear momentum

oðquiÞ
ot

þ oðqujuiÞ
oxj

¼ � op
oxi

þ osij
oxj

; ð2Þ

and thermal energy

oðqcpT Þ
ot

þ oðqcpujT Þ
oaj

¼ o

oxj
k
oT
oxj

� �
þ sij

oui
oxj

: ð3Þ

In these equations ui represents the velocity vector, p
the pressure, q the density, k the thermal conductivity, cp
the specific heat, T the temperature and sij the stress

tensor. Interaction between the velocity gradient tensor

and the stress tensor is accounted for by the second term

on the right-hand-side of Eq. (3). When the fluid is

purely viscous this term represents the internal heat

generation by viscous dissipation, while for elastic fluids

it also includes stored elastic energy.

The stress field is given by a rheological constitutive

equation and here we employ a simplified form of the

PTT model (SPTT), given by

Y ðskk ; T Þsij þ k
osij
ot

�
þ oðuksijÞ

oxk

�

¼ g
oui
oxj

�
þ ouj

oxi

�
þ k sjk

oui
oxk

�
þ sik

ouj
oxk

�
; ð4Þ

where k stands for the relaxation time and g is the vis-

cosity coefficient. The simplification invoked is that the

parameter controlling the second normal stress differ-

ence is set to zero; this is a common simplification

adopted in many works with the PTT model. The stress-

coefficient function Y is related to the rate of destruction

of impermanent junctions in the molecular network and

can be decoupled as

Y ðskk ; T Þ ¼ /ðT Þf ðskkÞ; ð5Þ
where skk is the trace of the stress tensor. Following

Phan-Thien [22] the function /ðT Þ is arbitrarily set to

unity at the reference temperature at which the material

parameters of the model are determined and therefore

thermal effects are not considered on the stress-coeffi-

cient function Y .
The stress-dependent part of the stress-coefficient

function has the exponential form

f ðskkÞ ¼ exp
ek
g
skk

� �
; ð6Þ

which can be linearised as:

f ðskkÞ ¼ 1þ ek
g
skk ð7Þ

following the proposition of the original reference for

the PTT [14].

This linearisation is adequate for small molecular

deformations as occurs in weak flows, according to the

flow classification of Tanner and Huilgol [23] (see also

[24]). Steady channel, pipe and pure Couette flows be-

long to this category of weak flows for which f ðskkÞ can
be described by Eq. (7). In strong flows the exponential

form should be adopted because it provides the correct

strain-thinning elongational viscosity behaviour at high

strain rates. In this paper, we will employ the linearised

form of Eq. (7) for the channel flow, because the flow is

weak and for which analytical solutions are available.

For validation purposes, some calculations will also

be carried out with inelastic non-Newtonian equations.

For this simplified situation, the constitutive equation

takes the form

sij ¼ g
oui
oxj

�
þ ouj

oxi

�
ð8Þ

The sets of governing equations (Eqs. (1)–(4)) are

solved with the finite volume method described in detail

in [15]. Basically, the solution domain is decomposed in

many adjacent control volumes over which those equa-

tions are integrated and transformed into algebraic

form. These discretized matrix equations are then solved

sequentially, for each dependent variable (u, p, s, T ),
with conjugate gradient solvers and the inherent non-

linearities due to the convection terms, the f ðsÞ term in

the constitutive equations and the temperature depen-

dence of properties are dealt with by iteration.

Regarding the accuracy of the calculations, the dis-

cretization of the various terms of Eqs. (2)–(4) was done

by central differences, which is a second-order scheme.

For the convective terms this was implemented via the

deferred correction approach in combination with the

upwind scheme to provide stability.

All calculations were carried out in a channel of half-

width H with fully-developed flow conditions at the inlet

for velocity and stress, but with a constant inlet
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temperature (Ti). At the wall, the no-slip condition was

imposed for velocity and stress and temperature (Tw)
was set constant. Due to flow symmetry only half the

geometry had to be considered and the corresponding

symmetry boundary conditions were imposed to all

quantities at the plane of symmetry.
3. Corrections to constant property correlations to

account for temperature effects

In viscoelastic developing duct flows, the Nusselt

number Nu and friction coefficient Cf can be expressed

as functionals

Nu ¼ f RePr; eWe2;Br;
x
L

� �
and

Cf ¼ f RePr; eWe2;Br;
x
L

� �
; ð9Þ

where the Nusselt number and friction coefficient are

defined by

Nu � hDH

k
and Cf �

4sw
1
2
qV 2

ð10Þ

and the product of Reynolds and Prandtl numbers is

usually referred to as a P�eeclet number, Pe � RePr, and
the Brinkman number Br measures the amount of vis-

cous dissipation and is defined further down (Eq. (14)).

In Eq. (10) DH is the hydraulic diameter, sw is the

wall shear stress and h is the heat transfer coefficient that

needs to be defined as a function of the wall heat flux _qqw
and a suitable difference DT . Here we consider

DT ¼ Tw � Tb where subscripts w and b designate wall

and bulk values, respectively so that _qq ¼ hDT . If these
are local temperatures and _qqw is a local heat flux then h
and Nu represent the local heat transfer coefficient and

Nusselt number, respectively. However, if _qqw is an

average flux over a given length L of duct, then DT
should also be defined clearly and here we will use

DT ¼ Tw1þTw2
2

� Tb1þTb2
2

with subscripts 1 and 2 designating

inlet and outlet, respectively. Similarly, the friction

coefficient can also be local or average depending on

whether sw is a local or an average value. The hydraulic

diameter is defined as usual [4] (DH � 4A
P , where A is the

duct cross-section area and P its corresponding wetted

perimeter).

The dependence of Nu and Cf on x=L can be dis-

carded for the case of fully-developed flow or flow

around bodies. Since the fluid properties vary with

temperature they have to be evaluated at a reference

temperature.

When the variations in temperature are not too large

it suffices to calculate the properties at the film temper-

ature Tf which for internal flows is calculated by the

following empiricism [25]
Tf ¼ 1
4
ðTw2 þ Tw1 þ Tb2 þ Tb1Þ: ð11Þ

If the temperature variations are large and the fluids are

liquids a second correction, called the property ratio

method (see [4, p. 276]) is required to correct the values

of Nu and Cf given by Eq. (9), which are based on

properties at constant temperature (subscript CP). This

correction to Nu and Cf should take into account the

variation with temperature of all fluid properties,

namely viscosity, thermal conductivity, heat capacity

and, for viscoelastic fluids, the relaxation time. How-

ever, in practice this approach has been simplified fol-

lowing a purely empirical suggestion by Sieder and Tate

[26] for the case of liquid flows whereby only the vis-

cosity is assumed to vary. Their suggestion has been

adopted by most authors [4,5,25,27], and can be ex-

pressed by

Nu
NuCP

¼ gw
gb

� �n

; ð12Þ

Cf

Cf ;CP

¼ gw
gb

� �m

; ð13Þ

where the standard values of the exponents are

n ¼ �0:14 and m ¼ 0:5 for gw
gb
> 1 (cooling) and 0.58 for

gw
gb
< 1 (heating).

In both equations, gw is evaluated at Tw ¼ ðTw1 þ
Tw2Þ=2 and gb at Tb ¼ ðTb1 þ Tb2Þ=2 but there is some

disagreement regarding the temperature at which fluid

properties are to be calculated for determining NuCP and

CfCP with Eq. (9). Some authors [4,5,27] refer that the

fluid properties should be calculated at the bulk tem-

perature Tb whereas others [25,28] refer that the film

temperature be used instead. Holman [28] even suggests

that both temperatures can be used depending on the

correlation. This is one of the issues studied in the

present investigation. Nevertheless, and unless otherwise

stated, fluid properties for the various non-dimensional

numbers are evaluated at the film temperature.

Numerical values for the exponents n and m have

been based on experiments and analysis for various

fluids ranging from oil [26] to liquid metals (Deissler,

according to [4]), but very few investigations have re-

ported the corresponding behaviour for viscoelastic

fluids. The issue is especially relevant because non-

Newtonian fluids are often very viscous, and have large

viscous dissipation effects so that even small temperature

differences between the inlet and the wall can still result

in large viscosity variations.

In what regards the heat transfer coefficient, Skel-

land [7] has given correlations for slurries obeying the

Bingham plastic model and also for power law fluids.

The property ratio method of Sieder–Tate was adopted

to correct for temperature effects but with the viscosi-

ties substituted by parameters from the rheological

equations, such as the consistency index (Kw=Kb instead



Table 1

Characteristics of the four meshes used in the calculations of the

thermal developing flow in a channel

Mesh Nx Ny fx, fy

M1 272 20 1.0237, 0.90

M2 272 40 1.0237, 0.9497

M3 544 80 1.012, 0.9747

M4 1088 120 1.006, 0.9831

M3s 272 80 1.0237, 0.9747

M4s 272 120 1.0237, 0.9831

Nx, Ny––number of cells in longitudinal and transverse direction

(from symmetry plane to wall). fx, fy––geometric expansion

factor of cells in longitudinal and transverse direction.
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of gw=gb). For high Reynolds number flows of non-

Newtonian solutions in the laminar and turbulent

regimes, Cho and Hartnett [29] confirmed the Sieder–

Tate corrections mentioned in the literature and

introduced extra corrections to account for buoyancy

effects on the Nusselt number and stated that there

were no differences between inelastic and elastic fluids.

However, it is known from [1,16,17] that for highly

viscoelastic fluids, such as polymer melts, the heat

transfer characteristics are affected by fluid elasticity,

especially in the presence of viscosity dissipation. Still,

it is fair to say that work with non-Newtonian fluids is

scarce and especially so for viscoelastic fluids under all

flow conditions.

One of the main objectives of the present study is to

demonstrate, based on numerical experiments, that the

empirical property ratio method of Eqs. (12) and (13)

can also be applied for viscoelastic fluids, specifically

when these follow the PTT model, but that the expo-

nents m and n should take different values and do not

have a simple dependence on the dimensionless numbers

(Brinkman number and eWe2). The issue of the reference
temperature for calculating fluid properties to evaluate

fluid properties in the property ratio method is also

discussed.
4. Results and discussion

Prior to presenting new results, the present numerical

methodology for viscoelastic fluids is verified and vali-

dated, with special attention on non-isothermal effects,

which were absent from previous studies with the same

methodology.

4.1. Verification and validation

We start by studying the thermal development of a

Newtonian fluid in a channel with fully-developed

hydrodynamic flow and negligible axial diffusion. For

this case semi-analytical solutions are available as tables

in Shah and London [27] and also as approximate

expressions, for both channel and pipe flows for the two

most common boundary conditions: constant wall

temperature or heat flux. The solution depends on the

normalised axial coordinate x� � x=ðDHPeÞ. For mod-

erate and large values of x� the solution to this Sturm–

Liouville problem is well represented by a limited

number of terms in the eigenfunction expansion (e.g.

Shah and London used 121 terms for x� > 10�4), but the

accuracy deteriorates significantly for lower values of x�

unless a very large number of terms is used. Then, a

better alternative is to apply Levêeque’s approximation,

which converges much faster when x� ! 0. The results

presented by Shah and London combine the best solu-

tions from both methods.
After an initial study it was found that a slight mesh

non-uniformity in the transverse direction, with finer

computational cells near the wall, provided higher

accuracy. Hence, the remaining computations used such

non-uniform meshes, the characteristics of which are

given in Table 1. The table shows that consistent mesh

refinement was carried out for meshes M2, M3 and M4.

The channel half-width H ¼ 0:005 m, but two different

lengths were used: for problems without viscous dissi-

pation L ¼ 1 m (L=ð2HÞ ¼ 100), whereas a longer duct

was required to attain fully-developed flow in the pres-

ence of viscous dissipation, L ¼ 10 m (L=ð2HÞ ¼ 1000).

Meshes M3s and M4s were used in calculations when-

ever axial diffusion was not neglected to allow speedier

but equally accurate computations.

For the thermal flow development under fully-

developed hydrodynamic inlet flow conditions, with

constant wall temperature and no viscous dissipation

(the Graetz–Nusselt problem for constant wall temper-

ature) calculations were carried out with the two meshes

M1 and M2 and the corresponding predictions of Nus-

selt number are compared with Shah and London [27]

data in Fig. 1 (Br ¼ 0 data). By definition, axial diffusion

of thermal energy is neglected in the theoretical problem.

Axial diffusion was also neglected in the calculations,

except at the inlet plane because this would require

significant changes to the code. In order to minimize the

negative influence of inlet axial diffusion on the calcu-

lations, these were carried out for a high Prandtl number

of 1000 and so, differences between theory and calcula-

tions were only limited to the very beginning of the

channel (low values of x�). The Reynolds number is

defined with the hydraulic diameter as Re � qU4H=g
and the Prandtl number is given by Pr � gcp=k. It can be

seen that for x� > 10�4, predictions collapse onto Shah

and London’s [27] data within the accuracy of the cal-

culations.

To quantify the accuracy of the calculations the four

consecutively refined meshes of Table 1 were used to

predict the Graetz–Nusselt problem in the presence of
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Fig. 1. Effect of mesh refinement on the longitudinal variation

of Nusselt number for the Graetz–Nusselt flow of a Newtonian

fluid in a channel (Re ¼ 2, Pr ¼ 1000) without (Br ¼ 0) and with

viscous dissipation (Br ¼ �1). (Only a quarter of the numerical

data are plotted.)
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Fig. 2. Effect of mesh refinement on the longitudinal variation

of the Nusselt number in Graetz–Nusselt channel flow with

viscous dissipation (Br ¼ �1) for an SPTT fluid Pr ¼ 1000,

Re ¼ 2, eWe2 ¼ 0:1. (Only a quarter of the numerical data are

plotted.)
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viscous dissipation for both Newtonian and SPTT flu-

ids. An assessment of the accuracy of those results under

fully-developed conditions (x� ! 1) is provided in

Table 2, where calculated friction factors and Nusselt

numbers are compared with results from the literature

data for Newtonian and SPTT fluids. For the latter,

those results were obtained by Coelho et al. [30], where

the Graetz–Nusselt problem with the SPTT fluid was

solved with a semi-analytical technique.

From data in both Tables the order of convergence

of the numerical method was found to be equal to 2 in

agreement with the formal second-order accuracy. The

Nusselt numbers are closer to the theoretical value than

the friction factors as would be anticipated from the

high Prandtl number considered (Pr ¼ 1000).

The influence of mesh refinement on the predictions

for the thermal development region can be assessed in

Figs. 1 (Br ¼ �1) and 2 for Newtonian and SPTT fluids

respectively, where the theoretical solutions for this
Table 2

Effect of mesh refinement on computed friction factors and Nusselt n

perature and Br ¼ �1 (eWe2 ¼ 0:1 for SPTT)

Mesh Newtonian

Cf ErrorCf
Nu ErrorNu

M1 47.870 0.271 17.4739 0.149

M2 47.968 0.067 17.4935 0.037

M3 47.992 0.016 17.4984 0.009

M4 47.997 0.007 17.4993 0.004

Theoretical values: Newtonian fluids––Cf ¼ 48, Nu ¼ 17:5; SPTT flui
Graetz problem are also plotted (from [31,30], respec-

tively). The fluid properties are considered independent

of temperature but account is given to viscous dissipa-

tion (Br ¼ �1, fluid cooling at wall) which is quantified

by a non-dimensional Brinkman number defined as

Br � gU 2

kðTw � TiÞ
: ð14Þ

For the viscoelastic SPTT fluid, elasticity is measured

by the product eWe2, where We is the Weissenberg

number defined as We � kU=H and e is the extensibility

parameter of the PTT model. These calculations were

carried out for eWe2 ¼ 0:1 and for the SPTT fluid the Nu
data in Fig. 2 are about 5% higher than for a Newtonian

fluid represented by a dashed line. In the presence of

viscous dissipation the effect of viscoelasticity on heat

transfer is much enhanced, as documented in [17,30]. In

both figures the agreement between predictions and

theory is excellent.
umber for fully-developed channel flow for constant wall tem-

SPTT

Cf ErrorCf
Nu ErrorNu

32.157 0.322 19.5716 0.204

32.239 0.069 19.6028 0.045

32.252 0.028 19.6094 0.011

32.256 0.017 19.6106 0.005

d––Cf ¼ 32:261, Nu ¼ 19:6116. Error in [%].
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Although uncertainties of less than 0.1% are already

obtained by using mesh M3, the effects we are looking

for in this study require very accurate results of Nusselt

number and friction factor, therefore mesh M4s is

henceforth used in all calculations. Whenever a different

calculation domain is required, a mesh having similar

characteristics of fineness is used. Note that, in the

remaining calculations, axial diffusion is always present.

Therefore, the reasons for the discrepancies observed

above at low values of x�, other than those of numerical

origin, disappear. Results from meshes M3s and M4s are

not shown in Figs. 1 (for Br ¼ �1) and 2 to avoid

clutter, but they coincide with the results obtained with

meshes M3 and M4.

4.2. The effect of temperature-dependent properties

These simulations were aimed at assessing the effect

of temperature-dependent properties upon the heat

transfer and hydrodynamic flow characteristics, and in

particular to quantify such effect on the Nusselt number

and friction coefficient. The properties of the fluid are

characterized in Section 4.2.1.

The analysis proceeds in two parts: first, in Section

4.2.2 we look at the effect of temperature on each sep-

arate fluid property, and the consequences in terms of

velocity and temperature profiles and of bulk flow

characteristics of engineering interest (Nusselt number

and friction factor). In addition, and since in a real flow

all the properties are affected simultaneously, we also

look at the combined effect when all properties are

temperature dependent.

In the second part (Section 4.2.3), a parametric

investigation on the effects of Br and eWe2 is carried out

in an attempt to present a correction for the Nusselt

number Nu and the friction coefficient Cf that takes into

account the distortions in velocity and temperature

profiles due to the variation of fluid properties with

temperature. First, the film temperature is used to cal-

culate fluid properties to be used in the calculations of

Nu, Cf , NuCP and Cf;CP and in the more detailed discus-

sion of the results. Then, in Section 4.2.4 the bulk tem-

perature is also used in the calculations as reference

temperature since its use is very frequent. Finally, a new

correction method based on an equivalent temperature

is presented in Section 4.2.5.

4.2.1. Fluid properties

The fluid properties whose dependence on tempera-

ture is investigated are the viscosity coefficient g and the

relaxation time k of the PTT model, the thermal con-

ductivity k and the heat capacity cp. The variation with

temperature of these properties is guided by data from

actual polymer processing operations [32]. In some cases

the fluid properties had to take values outside their

scope for polymer melts in order to be able to reach
some specific values of the non-dimensional numbers.

We selected the following expressions to account for

temperature variation of the fluid properties:

• For the viscosity g

gðT Þ ¼ g0aT ð15Þ

with g0 ¼ 10 Pas (except g0 2 ½0:1; 1� Pas for

Br 2 ½�1; 1�) and the shift factor aT given by the

Arrhenius equation

aT ¼ exp a
1

T þ 273:15

��
� 1

T0 þ 273:15

��
ð16Þ

with a¼ 1.72E+3 K and the reference temperature

T0 ¼ 190 �C;
• The relaxation time k follows a similar law

kðT Þ ¼ k0aT ð17Þ

with k0 ¼ 0:002 s;

• For the thermal conductivity k a linear variation with

temperature was used

kðT Þ ¼ k0ðk�0 þ k�s T Þ ð18Þ

with k0 ¼ 0:08W/(mK), k�0 ¼ 0:7753 and k�s ¼ 0:00118
1/�C;

• Finally, for the heat capacity cp again a linear varia-

tion was used as recommended by [32]

cp ¼ cp;0ðc�p;0 þ c�p;sT Þ ð19Þ

with cp;0 ¼ 0:4 J/(kgK), c�p;0 ¼ 1:2122 and c�p;2 ¼
�0:00112 1/�C.

4.2.2. The extent of the effect

In order to grasp the magnitude of the effect of

temperature-dependent properties on the variations of

the velocity and temperature profiles and on the Nusselt

number and friction factor, six simulations for devel-

oping channel flow (half-height H ¼ 0:005 m) were

carried out in a 10 m long domain at Pe ¼ RePr ¼ 100,

eWe2 ¼ 0:1, We ¼ 0:4 and Br ¼ �25. These non-dimen-

sional numbers were calculated with properties at the

inlet temperature of 190 �C and the wall temperature

was set constant at 185 �C (giving a relative temperature

variation of DT=Tin ffi 1:1%). In the reference simulation

all properties were independent of temperature (sub-

script CP), in four simulations only one property de-

pended on temperature and in the final simulation all

properties were varied simultaneously. These calcula-

tions have in common the properties at inlet tempera-

ture, i.e., they are not compared on the basis of either

the film temperature or the bulk temperature.

The normalised velocity profiles for fully-developed

flow are compared in Fig. 3: the solid line is for constant

properties (CP), the symbols pertain to a situation where

only the viscosity or the relaxation time depended on
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temperature, and the dashed line is for the case when all

properties were allowed to vary with temperature.

Thermal properties can only affect the velocity indirectly

via their effect upon the viscosity. Therefore, when the

viscosity is assumed constant such indirect effect is

switched off and the hydrodynamic problem remains

decoupled from the thermal solution. The fluid property

that has the largest influence on the flow kinematics is

the viscosity, which raises the velocity in the center of

the channel and decreases it near the wall and this is also

apparent in the dashed line which is close to the curve

for g ¼ gðT Þ. The relaxation time has a small influence

but of opposite sign.

This picture changes significantly when the norma-

lised temperature profiles of Fig. 4 are analysed. The

normalised temperature here used was defined as

h � T � Tw
Ti � Tw

; ð20Þ
Table 3

Comparison between the friction factor and Nusselt number

Flow case Nu DNu=NuCP [%] Nu

CP 19.611 – 19.758

g ¼ gðT Þ 17.206 )12.3 17.352

k ¼ kðT Þ 20.161 +2.8 20.310

k ¼ kðT Þ 20.210 +3.1 20.354

Cp ¼ CpðT Þ 19.946 +1.7 20.092

All properties 18.511 )5.6 18.654

Property variation with temperature followed Eqs. (15) to (19). Cons
so that the true magnitude of the effects of the various

properties can be assessed. Now, all properties seem

important: thermal conductivity and heat capacity di-

rectly affect the temperature profile but so do the vis-

cosity and relaxation time because of their effect on the

velocity profile and the inclusion of viscous dissipation.

The effect of relaxation time on h, although small in

the velocity profile, is now as large as the effect of vis-

cosity alone, but again in the opposite direction. How-

ever, since these effects also affect bulk temperatures, we

shall look next at bulk results which are of more engi-

neering interest. Table 3 lists the values of the friction

coefficient and Nusselt number corresponding to these

six simulations and the corresponding relative variations

due to temperature-dependent properties. The fluid

properties at 190 �C (inlet temperature) were used to

calculate all non-dimensional numbers. For the Nusselt

number the Table lists both the value corresponding to
DNu=NuCP [%] Cf DCf=Cf ;CP [%]

– 32.256 –

)12.2 27.042 )16.2
+2.8 34.16 +6.0

+3.0 32.256 –

+1.7 32.256 –

)5.6 28.585 )11.4

tant properties taken at Ti ¼ 190 �C.
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fully-developed channel flow (Nu) as well as the average
value (Nu) encompassing the heat transfer in the whole

duct from the entrance through the thermal developing

region and into the fully-developed flow.

The variations in Nu and Nu are very similar, so the

analysis of the corrections in the next subsection basi-

cally needs to be carried out only for one of the two

quantities. For convenience and to systematize we adopt

the fully-developed values. The main effect comes from

viscosity, which reduces Nu by 12% and Cf by 16% rel-

ative to the constant properties case. The effect of the

relaxation time is to increase the friction coefficient by

6% (slightly more than a third of the effect of viscosity

but in the opposite direction), an effect which is larger

than suggested by Fig. 3. In contrast, the effect of the

relaxation time on the Nusselt number is smaller than

suggested by Fig. 4: 2.8% which is of the same order as

the effect of heat capacity and thermal conductivity but,

since these three smaller effects are in the same direction,

their combination must be taken into account. Indeed,

when all properties are allowed to vary with temperature

the Nusselt number differs by only 5–6% from the CP

case, so the action of a temperature-dependent viscosity

has been reduced by more than 50% by the combined

effects of k, k and cp.
We shall now present the results of a new set of

simulations with a consistent choice of reference condi-

tions, so as to allow an unambiguous quantification of

the temperature effect, in agreement with the convention

described in Section 3. In these simulations isothermal

(CP) and non-isothermal cases have in common fluid

properties calculated at the same film temperature and

the corresponding results are presented in Table 4. The

exception to this are the last two runs, i0b and i1b, where
Table 4

Comparison between the fully-developed friction factor and Nusselt n

and i1b which use Tb

Run Property Re Pr

b0 gðT Þ 2.139 46.75

b1 CP 2.139 46.75

c0 kðT Þ 2 50

c1 CP 2 50

e0 kðT Þ 2 49.51

e1 CP 2 49.51

f0 cpðT Þ 2 49.45

f1 CP 2 49.45

i0 All vary 2.144 45.70

i1 CP 2.144 45.70

i0b All vary 2.379 39.90

i1b CP 2.379 39.90

Re ¼ 2, Pr ¼ 50, eWe2 ¼ 0:1 and Br ¼ �25 if properties calculated at
the fluid properties were calculated at the same bulk

temperature.

Using the data in Table 4 and the property ratio

correction method for each of the varying properties,

values of the corresponding exponents can be calculated

as follows

• From b0 and b1: Nu
NuCP

¼ gw
gb

� �n0

! n0 ¼ �0:6253;

Cf

Cf ;CP
¼ gw

gb

� �m0

! m0 ¼ �0:5226,

• c0 and c1: Nu
NuCP

¼ kw
kb

� �n00

! n00 ¼ 0:1556;
Cf

Cf ;CP
¼ kw

kb

� �m00

! m00 ¼ 0:1282,

• e0 and e1: Nu
NuCP

¼ kw
kb

� �n000

! n000 ¼ �0:9326;

Cf

Cf ;CP
¼ kw

kb

� �m000

! m000 ¼ 0:0053,

• f0 and f1: Nu
NuCP

¼ cp;w
cp;b

� �n0000

! n0000 ¼ 0:5198;

Cf

Cf ;CP
¼ cp;w

cp;b

� �m0000

! m0000 ¼ �0:0052.

When all properties vary the correction can be

compounded, assuming independent contributions,

according to

Nu
NuCP

¼ gw
gb

� �n0 kw
kb

� �n00 kw
kb

� �n000 cp;w
cp;b

� �n0000

¼ 0:9474;

ð21Þ

Cf

Cf ;CP

¼ gw
gb

� �m0
kw
kb

� �m00
kw
kb

� �m000
cp;w
cp;b

� �m0000

¼ 0:9188

ð22Þ

with the same exponents as above. These results differ by

)0.29% and )0.62% relative to the correct Nusselt

number and friction coefficient of run i1, respectively

when obtained from the corresponding CP values of run
umber with properties calculated at film temperature, except i0b

eWe2 Br Nu Cf

0.1 )23.38 17.2060 27.0418

0.1 )23.38 19.6116 30.1671

0.0861 )25 20.1609 34.1759

0.0861 )25 19.4718 33.2105

0.1 )24.76 20.2104 32.2556

0.1 )24.76 19.6116 32.2610

0.1 )25 19.9458 32.2556

0.1 )25 19.6116 32.2610

0.0870 )23.09 18.5105 28.5850

0.0870 )23.09 19.4812 30.9188

0.0707 )20.48 18.5105 28.5850

0.0707 )20.48 19.2919 28.9659

Ti.
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i0. These small differences are caused by the compen-

sating effects of the various coupled phenomena.

From an engineering point of view, simpler expres-

sions are more useful and the traditional way is to

concentrate all the variations in a viscosity correction

and determine a different exponent, i.e.,

• From i0 and i1: Nu
NuCP

¼ gw
gb

� �n
! n ¼ �0:2389; Cf

Cf ;CP
¼

gw
gb

� �m
! m ¼ �0:3668.

Exponents n and m differ significantly from those

quoted in the literature (see Eqs. (12) and (13)), espe-

cially for the friction coefficient: we found a negative

value m ¼ �0:37 in contrast to the positive value of

m ¼ 0:5 in Eq. (13). The exponent n retained the same

sign, but the difference is still large (n ¼ �0:14 for

Newtonian and n ¼ �0:24 for PTT). If only the viscosity
is allowed to depend on temperature (runs b0 and b1)

the exponents n0 and m0 differ even more from those in

the literature.

These values were obtained under the conditions

quoted for Eqs. (12) and (13), namely gw is evaluated at

ðTw1 þ Tw2Þ=2 and gb at ðTb1 þ Tb2Þ=2 and also with the

fluid properties calculated at Tf in Nu, Cf , NuCP and

Cf ;CP. Had we evaluated gb at the average mixing tem-

perature of the fluid within the channel (between the

inlet and outlet), exponents n and m would have taken

the values of )0.1381 and )0.2121, respectively (for runs

i0 and i1), i.e., n would be very close to the value quoted

in the literature but the sign of the friction coefficient

exponent would still be negative. It can be argued that

the discrepancy is due to the fact that the correct refer-

ence temperature for determining fluid properties is Tb
rather than Tf . Hence, we repeated cases i0 and i1 in

Table 4 using the fluid properties at Tb, now called i0b

and i1b, and the corresponding exponents were

• From i0b and i1b: Nu
NuCP

¼ gw
gb

� �n
! n ¼ �0:1933;

Cf

Cf ;CP
¼ gw

gb

� �m
! m ¼ �0:0619.

These two values are closer to those quoted in the

literature (see Eqs. (12) and (13)) than those derived on

the basis of Tf but the improvement is not dramatic and

m is still negative. Had we again evaluated gb at the

mixing temperature of the fluid rather than at Tb the

values of the exponents would be n ¼ �0:1117 and

m ¼ �0:0358, i.e., n would now be worse than in the case

of Tf which was very close to )0.14.
In conclusion, the values of n and m, and especially

the latter, are very sensitive to the temperatures used to

calculate the fluid properties, which must be defined

unambiguously. Had we used the recommended expo-

nents n ¼ �0:14 and m ¼ 0:5 to calculate the true Nu
and Cf from the corresponding temperature independent

values (NuCP and Cf ;CP) for the runs i0 and i1 in Table 4,
the errors would be )2.1% and +20.4% whereas for the

runs i0b and i1b the same errors would be +1.1% and

+12.8%, respectively. If for these flow conditions the

error in the Nusselt number is negligible for engineering

purposes, the same is not true for the friction factor

regardless of the temperature used to calculate fluid

properties.

In the next subsection a detailed investigation is

carried out to quantify n and m for the SPTT fluid in a

channel flow as a function of Br and eWe2.

4.2.3. Effect of Br and eWe2

Fig. 5 shows the variation of the exponent (n) re-

quired to correct the constant property Nusselt number

(NuCP), as a function of the elastic parameter eWe2 for

different values of the Brinkman number. Note that n
was calculated on the basis of fully-developed conditions

and eWe2 and Br appearing in the graphs are based on

properties calculated at the inlet temperature to reduce

the number of computer simulations, because the film

temperature is not known a priori. However, for each

value of Br and eWe2 the corresponding Nu and NuCP are

calculated with fluid properties determined at the same

film temperature. If Br and eWe2 were to be calculated at

Tf their values would vary from case to case. As shown

in Fig. 5(a), there are basically two regions of behaviour:

at high positive and negative Brinkman numbers, n as-

sumes small negative values, slowly varying with the

Brinkman number; as Br ! 0, n varies strongly and even

changes sign. The strongest variations are observed for

positive Brinkman numbers (Br > 0 is associated with

Tw > Ti) and in the region where the critical Brinkman

numbers are found. These critical Brinkman numbers

correspond to changes in the direction of the wall heat

flux and in the sign of the difference between bulk and

wall temperatures due to the intense heat produced by

viscous dissipation [17]. For a given eWe2 the critical

Brinkman numbers will be different in the constant

property and the temperature-dependent cases, leading

to these large variations in n and m, because the Nusselt

number changes from high positive to high negative

values or vice-versa.

Analysing these variations in more detail, Fig. 5(b)

plots n for Br < 0. At small negative Brinkman numbers,

n behaves monotonically with eWe2 and shows that the

less elastic case has the more intense property correction

(n ¼ 0 means no correction). Similarly, n should behave

monotonically as Br ! �1 with the less elastic case

requiring the smallest correction, but this asymptotic

behaviour has not yet been reached at Br ¼ �1000 where

n ¼ �0:263, )0.297, )0.293 and )0.285 for eWe2 ¼ 0:1,
1, 10 and 100, respectively. Viscous dissipation is seen to

increase the required correction whereas elasticity slows

down the variation of n towards the asymptotic value.

For Br > 0, Fig. 5(c) shows the variation of n and the

situation here is rather more complex especially at low



-5

-4

-3

-2

-1

0

1

2

3

4

5

-100 -50 0 50 100

εWe2= 0.1

εWe2= 1

εWe2= 10

εWe2= 100

n

Br

(a)
-0.5

-0.4

-0.3

-0.2

-0.1

0

-100 -80 -60 -40 -20 0

εWe2= 0.1

εWe2= 1

εWe2= 10

εWe2= 100

n

Br

(b)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 20 40 60 80 100

εWe2= 0.1

εWe2= 1

εWe2= 10

εWe2= 100

n

Br

(c)

Fig. 5. Variation of exponent n of Nusselt number correction with Br and eWe2. Fluid properties were evaluated at the film tem-

perature (Tf ), but Br and eWe2 in the abscissa were calculated at inlet temperature (Ti): (a) �100 < Br < 100; (b) zoom for

�100 < Br < 0; (c) zoom for 0 < Br < 100.

J.M. N�oobrega et al. / International Journal of Heat and Mass Transfer 47 (2004) 1141–1158 1151
Brinkman numbers and for the reasons explained above.

However, for Br larger than the critical Brinkman

numbers, the variation of n with eWe2 is always mono-

tonic for all values of Br and, as for negative Br, n tends

to asymptote for intense viscous dissipation, with a

slower rate of variation of n for the more elastic cases.

The required correction increases with eWe2 as at high

negative Br, but now, in contrast, the viscous dissipation

reduces the correction.

In general, the value of n is far from the quoted value

of )0.14 for Newtonian fluids, but maintains the same

sign. It is important at this stage to assess whether the

use of n ¼ �0:14 leads to large errors and Fig. 6 repre-

sents the error incurred by using the value of n recom-

mended in the literature for correcting NuCP relative to

the true Nu, which is given by

ErrorNu ¼
gw
gb

� ��0:14�n

� 1: ð23Þ
In calculating ErrorNu the film temperature is being

used to determine the fluid properties except for gw and

gb determined at Tw and Tb, respectively.
The errors are rather small, below 5% for Br < �0:1

and 7% for Br > 0:1 and decrease with parameter eWe2.
In essence, and in spite of the differences found in n, the
classical correction with n ¼ �0:14 can still be used for

engineering purposes because errors incurred are small,

of the order of at most 2.5% for jBrj > 3, except when

viscous dissipation effects are weak. Under weak viscous

dissipation conditions, and less so for fluids with high

peaks of extensional viscosity (e ! 0), the errors can be

significant and then it is recommended that the adequate

corrections found in this work be used instead of the

exponent value quoted in the literature.

For the friction coefficient corrective exponent m,
Fig. 7 shows similar plots to those of n in Fig. 5. For

Br < 0 the variation of m in Fig. 7(b) is always mono-

tonic with both eWe2 and Br and m also asymptotes



-0.1

-0.05

0

0.05

0.1

-100 -50 0 50 100

εWe2= 0.1

εWe2= 1

εWe2= 10

εWe2= 100

E
rr

or
N

u

Br

Fig. 6. Variation with Br and eWe2 of the error in Nusselt

number associated with a Nu correction based on standard n
exponent when using Tf for calculating fluid properties.

1152 J.M. N�oobrega et al. / International Journal of Heat and Mass Transfer 47 (2004) 1141–1158
for large negative values of Br, with the correc-

tions being smaller (n closer to 0) for the more elastic

cases and increasing in all cases with viscous dissipa-

tion.

For Br > 0 plotted in Fig. 7(c), m behaves mono-

tonically with Br but not with eWe2 except at very large

values of Br (Br > 100). As with n, the corrections de-

crease with viscous dissipation. It may seem strange that

m shows the same type of variation as n, but this is due
to the fact that the flow hydrodynamics and heat

transfer are no longer decoupled when all fluid proper-

ties depend on temperature. Therefore, because the ratio

gw=gb reflects the variations in Tw and Tb associated with

the passage of the critical Brinkman numbers, the

exponent m also behaves in a way similar to exponent n.
In general, and in contrast to n, the values of m are

very different from those quoted in the literature for

Newtonian fluids (0.5 for cooling and 0.58 for heating),

and are negative. As a consequence, as seen in Section

4.2.2, corrections to the friction coefficient are larger

than those for the Nusselt number and cannot be ne-

glected. The errors incurred in calculating Cf from the

constant property Cf;CP by using the recommended val-

ues of m ¼ 0:5 and 0.58, and given by Eq. (24), are

plotted in Fig. 8.
ErrorCf
¼

gw
gb

� �0:50�m
� 1 for gw

gb
> 1;

gw
gb

� �0:58�m
� 1 for gw

gb
< 1:

8>><
>>:

ð24Þ

These errors are larger than ErrorNu but show the

same pattern: constant ErrorCf
for large positive and

negative values of Br, increasing as viscous dissipation

looses strength. However, the variation of ErrorCf
with

eWe2 is more intense (for eWe2 ¼ 0:1 there are errors of

the order of 20%) and as with ErrorNu, a reduction in

eWe2 increases the errors. Clearly, low values of e lead to

large errors in predicting Cf with the standard exponents

quoted in the literature. Here, in contrast to Nu, the use
of the correct coefficient is mandatory.

4.2.4. What should be the reference temperature for fluid

properties

The issue of the adequate reference temperature to be

used in calculating the fluid properties, mentioned at the

start of Section 4.2, is discussed now. The investigation

of the property ratio method in Section 4.2.3 was as-

sessed using Tf and here we present the corresponding

results obtained with Tb as the reference temperature for

determining the fluid properties.

Fig. 9(a) plots the variation of n with Br and eWe2 for
Br < 0 corresponding to Fig. 5(b). As we can see the

pattern is quite similar although the values of n are now

less negative than those of Fig. 9(b). However, this is not

enough to explain the difference relative to the standard

n ¼ �0:14 value in the literature. For Br > 0 Fig. 9(b)

plots data that are comparable to the plots of Fig. 5(c)

and here again the use of Tb provides less negative values
of n than the use of Tf . That this is so can be checked in the

plot of ErrorNu in Fig. 10 which is directly comparable to

Fig. 6. Except for weak viscous dissipation, ErrorNu is

lower than the corresponding quantity when using Tf .
Regarding the friction factor corrective exponent m,

the difference relative to the same exponent when using

Tf is even more dramatic, but still insufficient to turn m
into a positive quantity as the standard literature value

of m. Fig. 11 plots the variation of m with Br and eWe2

for Br < 0 and is directly comparable with Fig. 7(b)

whereas Fig. 12 represents the variation of ErrorCf
with

Br and eWe2 and is directly comparable with Fig. 8.

Whereas errors of the order of 20% are seen at

eWe2 ¼ 0:1 when using Tf , these drop to around 13%

when using Tb at large positive and negative values of Br.
Since the use of Tb is more common than the use of Tf ,
the values of n and m for the former are listed in Table 5.

In conclusion, the standard corrections for the Nus-

selt number and friction factor found in the literature,

Eqs. (12) and (13), are not suitable to compensate for

temperature effects for simple shear flows of viscoelastic

fluids, with or without viscous dissipation. This dis-

agreement is not caused by any ambiguity in defining the
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reference temperature used to calculate the fluid prop-

erties, although the errors are lower when using the bulk

temperature (Tb) than with the film temperature (Tf ).

4.2.5. Equivalent temperature

Regardless of the temperature used to quantify fluid

properties, exponents n and m in the property ratio

method vary significantly and in a complex way with Br
and eWe2, especially in the vicinity of the condition for

negligible viscous dissipation (Br ¼ 0). This is caused by

the various critical Brinkman numbers and the associ-

ated variations in the difference between bulk and wall

temperatures and in the direction of the wall heat flux.

An alternative correction method for Nu and Cf , that

removes some of the variations seen with n and m, is the
use of an equivalent temperature (Teq) to calculate fluid

properties to be used in the Nusselt number and friction

coefficient expressions for temperature independent
properties. This correction was inspired by the meth-

odology used to correct for temperature-dependent

properties in high velocity gas flows where viscous dis-

sipation is also important. There, a reference tempera-

ture, based on stagnation conditions, is used to calculate

the fluid properties.

The determination of Teq was carried out by a

numerical search method based on bracketing and

bisection for the same fully-developed flow data and

plots of the corresponding normalised equivalent tem-

perature DT �
eq, to be used in the correction for Nu and Cf

are shown in Figs. 13 and 14, respectively. Some of the

data are listed in Table 6.

The normalised equivalent temperature is defined

with the film temperature as

DT �
eq �

Teq � Tf
Tf

: ð25Þ
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In this method to calculate the Nusselt number for fully-

developed channel flow with constant wall temperature

and viscous dissipation (Br 6¼ 0), the fluid properties are

determined at Teq and expression (26), derived by Coelho

et al. [17], is used. This takes into account the effect of

temperature on fluid properties.

Nu ¼
1925 1þ 6

5
a

� �2
2 54a2 þ 110aþ 55ð Þ ð26Þ

with a ¼ 9eWe2 UN
U

� �2
(see also [33]) and

UN

U
¼

4321=6 d2=3 � 22=3
� �
6b1=2d1=3

;

d ¼ 33b
�

þ 4
�1=2 þ 33=2b1=2;

b ¼ 54
5
eWe2:

ð27a; b; cÞ

For Br ¼ 0 the expression for Nu is different and is

given by the ratio of two long polynomials in a, Eq. (44)
in Coelho et al. [17]. However, for Br ¼ 0 an equivalent

temperature could not be determined not even if Eq. (26)

is used. Thus, the equivalent temperature method for Nu
fails for Br ¼ 0. This is so because at Br ¼ 0 the theo-

retical Nu is almost constant and it can not be changed

by variations in fluid properties. Note that this feature is

also present for Newtonian fluids and under these con-

ditions only the property ratio method can be used.
The equivalent temperature for the friction factor is

different and, as for the Nusselt number, it provides the

temperature at which fluid properties must be deter-

mined to be used in the following equation for the

friction factor in a channel flow (derived in [33])

Cf ¼
96

Re
UN

U
ð28Þ

with UN=U given above and the Reynolds number de-

fined with the hydraulic diameter. In contrast to Teq;Nu,
Teq;Cf

can be defined for Br ¼ 0 because Cf is not given

by a constant number.

Clearly, Figs. 13 and 14 show smoother and well-

behaved variations of DT �
eq

� �
Nu

and DT �
eq

� �
Cf

than those
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of n and m, except in the very near vicinity of Br ¼ 0.

The asymptotic values at large positive and negative
Brinkman numbers are practically identical for Nu and

Cf as can be assessed in the comparison of Fig. 15.
5. Conclusions

A finite volume calculation procedure was used to

investigate the effect of temperature-dependent fluid

properties on the friction factor and heat transfer in

developing and fully-developed channel flow of visco-

elastic fluids obeying a form of the PTT rheological

constitutive equation with a linearised stress-coefficient

function. It was shown that the use of the usual expo-

nents (Eqs. (12) and (13)) in the property ratio method

can result in large errors in predicting Nu and Cf , espe-

cially when viscous dissipation is weak, and alternative

values are presented as a function of the Brinkman

number and a non-dimensionless number quantifying

elastic effects, eWe2. However, the use of these values is

rather complex as the problem is highly non-linear. The

use of the bulk temperature to quantify NuCP improved

the values of n and m but the exponents were still too

different from the standard coefficients.

An alternative method to account for the effects of

temperature dependence of fluid properties on Nu and



Table 5

Values of exponents n and m for correcting Nu and Cf using Eqs. (12) and (13) and fluid properties calculated at Tb for viscoelastic flows
of PTT fluids in a channel with imposed constant wall temperature

Br eWe2 ¼ 0:1 eWe2 ¼ 1 eWe2 ¼ 10 eWe2 ¼ 100

n m n m n m n m

)1000 )0.217 )0.128 )0.252 )0.079 )0.262 )0.066 )0.259 )0.059
)100 )0.211 )0.111 )0.239 )0.058 )0.237 )0.029 )0.216 )0.0032
)50 )0.205 )0.094 )0.227 )0.036 )0.214 +0.004 )0.181 +0.050

)25 )0.193 )0.062 )0.205 +0.0008 )0.179 +0.057 )0.135 +0.120

)10 )0.166 +0.013 )0.157 +0.081 )0.118 +0.149 )0.075 +0.212

)5 )0.136 +0.095 )0.112 +0.156 )0.073 +0.217 )0.041 +0.264

)3 )0.111 +0.158 )0.082 +0.207 )0.048 +0.255 )0.025 +0.290

)1 )0.074 +0.219 )0.056 +0.250 )0.035 +0.285 )0.019 +0.308

)0.5 +0.019 +0.443 +0.037 +0.379 +0.027 +0.351 +0.016 +0.338

)0.1 +0.047 +0.422 +0.037 +0.371 +0.021 +0.350 +0.011 +0.340

)0.01 +0.083 +0.461 +0.053 +0.388 +0.028 +0.358 +0.014 +0.344

0 )0.077 +0.466 )0.041 +0.390 )0.021 +0.358 )0.010 +0.344

0.01 +0.075 +0.742 +0.097 +0.518 +0.067 +0.412 +0.030 +0.367

0.1 +0.079 +0.760 +0.100 +0.525 +0.069 +0.415 +0.038 +0.371

0.5 +0.169 +0.804 +0.124 +0.522 +0.069 +0.414 +0.034 +0.373

1 +0.114 +0.987 +0.130 +0.610 +0.082 +0.444 +0.043 +0.382

3 +5.72 +17.7 +0.441 +1.11 +0.153 +0.550 +0.064 +0.418

5 )0.581 )1.199 +6.67 +11.8 +0.298 +0.766 +0.100 +0.474

10 )0.316 )0.415 )0.508 )0.616 +5.75 +8.89 +0.248 +0.698

25 )0.248 )0.218 )0.329 )0.210 )0.475 )0.384 )2.509 )3.469
50 )0.232 )0.171 )0.287 )0.138 )0.342 )0.185 )0.493 )0.421
100 )0.224 )0.149 )0.269 )0.108 )0.298 )0.121 )0.348 )0.202
1000 )0.218 )0.132 )0.255 )0.084 )0.268 )0.075 )0.272 )0.077
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Table 6

Values of DT �
eq

� �
Nu

and DT �
eq

� �
Cf

for calculating Nu and Cf using Eqs. (26) and (27) to account for temperature-dependent fluid

properties for viscoelastic flows of PTT fluids in a channel with imposed constant wall temperature

Br eWe2 ¼ 0:1 eWe2 ¼ 1 eWe2 ¼ 10 eWe2 ¼ 100

DT �
eq

� �
Nu

DT �
eq

� �
Cf

DT �
eq

� �
Nu

DT �
eq

� �
Cf

DT �
eq

� �
Nu

DT �
eq

� �
Cf

DT �
eq

� �
Nu

DT �
eq

� �
Cf

)1000 +0.191 +0.037 +0.103 +0.019 +0.077 +0.0091 +0.065 +0.0042

)100 +0.192 +0.036 +0.103 +0.019 +0.077 +0.0085 +0.066 +0.0039

)50 +0.194 +0.036 +0.104 +0.018 +0.077 +0.0079 +0.066 +0.0032

)25 +0.197 +0.035 +0.105 +0.017 +0.078 +0.0067 +0.067 +0.0019

)10 +0.207 +0.033 +0.110 +0.014 +0.082 +0.0029 +0.070 )0.0021
)5 +0.225 +0.030 +0.119 +0.008 +0.089 )0.0035 +0.076 )0.0089
)3 +0.256 +0.025 +0.135 +0.001 +0.102 )0.0124 +0.089 )0.0185
)1 +0.655 +0.007 +0.348 )0.039 +0.309 )0.0629 +0.297 )0.0743
)0.5 +0.010 )0.009 0.000 )0.012 )0.003 )0.0128 )0.005 )0.0132
)0.1 )0.009 )0.074 )0.027 )0.080 )0.035 )0.0822 )0.038 )0.0833
)0.01 )0.077 )0.083 )0.078 )0.084 )0.080 )0.0842 )0.083 )0.0842
0 )0.085 )0.084 )0.0844 )0.0843
0.01 +0.057 +0.056 +0.057 +0.057 +0.055 +0.0564 +0.034 +0.0558

0.1 +0.063 +0.058 +0.059 +0.057 +0.058 +0.0570 +0.057 +0.0569

0.5 +0.029 +0.016 +0.022 +0.015 +0.019 +0.0141 +0.018 +0.0137

1 +0.114 +0.073 +0.085 +0.066 +0.075 +0.0612 +0.070 +0.0589

3 +0.153 +0.049 +0.089 +0.036 +0.069 +0.0284 +0.060 +0.0248

5 +0.166 +0.044 +0.093 +0.030 +0.071 +0.0210 +0.061 +0.0170

10 +0.178 +0.041 +0.097 +0.024 +0.073 +0.0152 +0.063 +0.0109

25 +0.185 +0.038 +0.100 +0.021 +0.075 +0.0116 +0.064 +0.0071

50 +0.188 +0.038 +0.101 +0.020 +0.076 +0.0104 +0.065 +0.0058

100 +0.189 +0.037 +0.102 +0.020 +0.076 +0.0098 +0.065 +0.0052

1000 +0.191 +0.037 +0.103 +0.019 +0.077 +0.0092 +0.065 +0.0043
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Cf , determines an equivalent temperature to calculate

properties to be used in the theoretical expressions for

constant properties. Values of this normalised equiva-
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∆T
eq
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εWe
2

Fig. 15. Variation with eWe2 of the asymptotic values of the

normalised equivalent temperatures. eWe2 in abscissa calculated

at Tin.
lent temperature were quantified and the method was

seen to be a better alternative than the property ratio

method, except under weak viscous dissipation condi-

tions where it still did not provide a simple correction

technique.

For the steady simple shear flow considered in this

study it could be argued that an alternative and simpler

way to arrive at the same results would be to prescribe

an adequate viscosity function, g, and solve the relevant

governing equations as in the case of the generalised

Newtonian fluid. It is important to realize that such

approach is not feasible because in the present problem

the motion, the constitutive, and the energy equations

are coupled through a temperature-dependent-property

effect and no simple expression for the viscosity coeffi-

cient, in terms of _cc and T , can be derived. We are

therefore faced with the problem of solving the full set of

equations for velocity, stress and temperature, as done

in this work.
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